Quasi-Antiorder Relational System

Duško Jojić

Department of Mathematics and Informatics Banja Luka University, 2, Mladen Stojanović Street 78000 Banja Luka, Bosnia and Herzegovina ducci68@blic.net

Daniel A. Romano

Department of Mathematics and Informatics Banja Luka University, 2, Mladen Stojanović Street 78000 Banja Luka, Bosnia and Herzegovina bato49@hotmail.com

Abstract

This paper is within the Bishop's constructive mathematics. A quasi-antiorder relational system means a pair (A, R) where $(A, =, \neq)$ is a set with apartness and R is a consistent and cotransitive binary relation on A. We define and study a quotient system mapping φ such that the factor relation $R/Coker\varphi$ on the factor set $A/Coker\varphi$ is also a quasi-antiorder relational system.

Mathematics Subject Classification: Primary: 03F65, Secondary: 06A06, 06A99, 08A02

Keywords: Constructive mathematics, coequality relation, relational system, cotransitive relation, quasi-antiorder, QS-mapping

1 Introduction

This paper is a continuation of the second author's recent papers [12] and [13]. Our setting is Bishop's constructive mathematics ([1], [2], [6], [14]).

The concept of a relational system was introduced by A.I.Maltsev ([4], [5]) We will restrict our consideration to relational systems with only one binary relation. Hence, by a relational system we will take a pair $\mathbf{A} = (A, R)$, where $(A, =, \neq)$ is a set with apartness and $R \subseteq A \times A$, i. e., R is a binary relation on A. Relational systems play an important role both in mathematics and in

applications since every formal description of a real system can be done by means of relations. For these considerations we often ask about a certain factorization of a relational system $\mathbf{A} = (A, R)$ because it enables us to introduce the method of abstraction on \mathbf{A} . Hence, if θ is a coequality on A, we ask about a 'factor relation' R/θ on the factor set A/θ such that the factor system $(A/\theta, R/\theta)$ shares some of 'good' properties of \mathbf{A} .

In this paper, we are mostly interested in relational systems $\mathbf{A} = (A, R)$ where R is consistent, i.e. $(\forall x, y \in A)((x, y) \in R \implies x \neq y)$ and cotransitive, i.e. $(a, c) \in R$ imply $(\forall b \in A)((a, b) \in R \lor (b, c) \in R)$. In that case, A is called a *consistent and cotransitive system* or a *quasi-antiorder system*.

Our intention is to study the situation on \boldsymbol{A} such that the system $(A/\theta, R/\theta)$ is also consistent and cotransitive.

Let us note that a similar task for anti-ordered sets was already studied in [9]-[13], and we will try to modify that construction for consistent and cotransitive relational systems. According to [9] and [10], if $(S, =, \neq, \cdot, \alpha)$ is an anti-ordered semigroup and σ a quasi-antiorder on S, then the relation q on S, defined by $q = \sigma \cup \sigma^{-1}$, is an anticongruence on S and the set S/q is an anti-ordered semigroup under anti-order Θ defined by $(xq, yq) \in \Theta \iff (x, y) \in \sigma$. An anticongruence q on S is called *regular* if there is an antiorder " θ_1 " on S/qsatisfying the following conditions:

(1) $(S/q, =_1, \neq_1, \cdot, \theta_1)$ is an anti-ordered semigroup;

(2) The mapping $\pi : S \ni a \longmapsto aq \in S/q$ is an anti-order reverse isotone epimorphism.

We call the antiorder " θ_1 " on S/q a regular antiorder with respect to a regular anticongruence q on S and the anti-order α .

In this article we are interested in quasi-antiorder systems $((A, =, \neq), \alpha)$ and θ coequality on A such that the relation α/θ , defined by $(a\theta, b\theta) \in \alpha/\theta \iff (a, b) \in \theta^C \circ \alpha \circ \theta^C$, is a quasi-antiorder relation on A/θ . The system $A/\theta = (A/\theta, \alpha/\theta)$ will be called a *quotient system of* A by θ .

2 Preliminaries

Let $(A, =, \neq)$ be a set in the sense of books [1], [2], [6] and [14], where " \neq " is a binary relation on A which satisfies the following properties:

$$\neg (x \neq x), \, x \neq y \Longrightarrow y \neq x, \, x \neq z \Longrightarrow x \neq y \lor y \neq z, \\ x \neq y \land y = z \Longrightarrow x \neq z,$$

called *apartness* (A. Heyting). The apartness is *tight* (W. Ruitenburg) if $\neg (x \neq y) \Longrightarrow x = y$ holds. Let Y be a subset of A and $x \in A$. The subset Y of A is strongly extensional in A if and only if $y \in Y \Longrightarrow y \neq x \lor x \in Y$ ([1], [8]). If

 $x \in A$, we defined ([8]) $x \bowtie Y$ by $(\forall y \in Y)(y \neq x)$.

Let $f: (A, =, \neq) \longrightarrow (B, =, \neq)$ be a function. We say that it is: (a) f is strongly extensional if and only if $(\forall a, b \in A)(f(a) \neq f(b) \Longrightarrow a \neq b)$; (b) f is an embedding if and only if $(\forall a, b \in A)(a \neq b \Longrightarrow f(a) \neq f(b))$. Let $\alpha \subseteq A \times B$ and $\beta \subseteq B \times C$ be relations. The filled product ([7]) of relations α and β is the relation

$$\beta \ast \alpha = \{(a,c) \in A \times C : (\forall b \in B) ((a,b) \in \alpha \lor (b,c) \in \beta\}.$$

A relation $q \subseteq A \times A$ is a *coequality* relation on A if and only if holds:

$$q \subseteq \neq, \ q = q^{-1}, \ q \subseteq q * q.$$

If q is a coequality relation on set $(A, =, \neq)$, we can construct factor-set $(A/q, =_1, \neq_1)$ with

$$aq =_1 bq \Longleftrightarrow (a,b) \bowtie q, \ aq \neq_1 bq \Longleftrightarrow (a,b) \in q$$

A relation α on A is an *antiorder* ([9]-[12]) on A if and only if

$$\alpha \subseteq \neq, \ \alpha \subseteq \alpha \ast \alpha, \ \neq \subseteq \alpha \cup \alpha^{-1}, \ (\alpha \cap \alpha^{-1} = \emptyset)$$

As in [9], a relation $\tau \subseteq A \times A$ is a *quasi-antiorder* on A if and only if

$$\tau \subseteq (\alpha \subseteq) \neq, \ \tau \subseteq \tau * \tau, \ (\tau \cap \tau^{-1} = \emptyset).$$

Let $f : ((A, =, \neq), \alpha) \longrightarrow ((B, =, \neq), \beta)$ be a strongly extensional function of relational systems. f is called *isotone* if $(\forall x, y \in A)((x, y) \in \alpha \Longrightarrow$ $(f(x), f(y)) \in \beta)$; f is called *reverse isotone* if and only if $(\forall x, y \in A)((f(x), f(y)) \in$ $\beta \Longrightarrow (x, y) \in \alpha)$. The strongly extensional mapping f is called an isomorphism if it is injective and embedding, onto, isotone and reverse isotone. Aand B called isomorphic, in symbol $A \cong B$, if exists an isomorphism between them.

Let us note if $\varphi : ((A, =, \neq), \alpha) \longrightarrow ((B, =, \neq), \beta)$ is a strongly extensional of quasi-antiorder systems, then $\varphi^{-1}(\beta)$ is a quasi-antiorder included in α .

3 Results

Firstly, we will start with two definitions:

Definition 1 Let $((A, =, \neq), \alpha)$ and $((B, =, \neq), \beta)$ be two relational systems. A reverse isotone strongly extensional mapping $\varphi : A \longrightarrow B$ is called a *quotient* system mapping (abbreviated to QS-mapping) of A to B if holds

$$\alpha \subseteq Ker\varphi \circ \varphi^{-1}(\beta) \circ Ker\varphi.$$

In the case when φ is onto, B is called a *quotient set* of A by φ .

Note: It is easy to see that QS-mapping of two quasi-antiorder relational systems is isotone mapping. In fact, if (x, y) is an arbitrary element of α , then there exist elements a, b of A such that $\varphi(x) = \varphi(a)$ and $(\varphi(a), \varphi(b)) \in \beta$ and $\varphi(b) = \varphi(y)$. Since β is a quasi-antiorder relation on B, out of $(\varphi(a), \varphi(x)) \in \beta \subseteq \varphi$ or $(\varphi(x), \varphi(y)) \in \beta$ or $(\varphi(y), \varphi(b)) \in \beta \subseteq \varphi$ we have $(\varphi(x), \varphi(y)) \in \beta$. So, the QS - mapping is a isotone mapping.

Definition 2 Let $((A, =, \neq), \alpha)$ be a relational systems and θ be a coequality relation on A. Define a binary relation α/θ on the set A/θ as follows:

$$(a\theta, b\theta) \in \alpha/\theta \iff (a, b) \in \theta^C \circ \alpha \circ \theta^C$$

The system $\mathbf{A}/\theta = (A/\theta, \alpha/\theta)$ will be called a quotient system of \mathbf{A} by θ .

The following statement is obvious.

Lemma 1 Let $\mathbf{A} = (A, \alpha)$ be a relational system and θ be a coequality on A. (i) If $\alpha \subseteq \theta$, then α/θ is consistent.

(ii) α/θ is symmetric if and only if α is symmetric.

(iii) If α is cotransitive, then α/θ is cotransitive too.

Proof: (1) Suppose that α is included in θ and let $(a\theta, b\theta)$ be an arbitrary element of α/θ . Then $(a, b) \in \theta^C \circ \alpha \circ \theta^C \subseteq \theta^C \circ \theta \circ \theta^C \subseteq \theta$. Thus, $a\theta \neq_1 b\theta$. (2) Immediately follows from definitions of symmetry and α/θ .

(3) Let $(a\theta, c\theta)$ be an element of α/θ and let $b\theta$ is an arbitrary element of A/θ . Then $(a, c) \in \theta^C \circ \alpha \circ \theta^C$, i.e. then there exist elements x, z in A such that

$$(a, x) \bowtie \theta \land (x, z) \in \alpha \land (z, c) \bowtie \theta.$$

Hence,

$$(a,x) \bowtie \theta \land (\forall y \in A)((x,y) \in \alpha \lor (y,z) \in \alpha) \land (z,c) \bowtie \theta$$

and

$$(\forall y \in A)(((a, x) \bowtie \theta \land (x, y) \in \alpha \land (z, c) \bowtie \theta) \lor ((a, x) \bowtie \theta \land (y, z) \in \alpha \land (z, c) \bowtie \theta)) \ .$$

Thus, for y = b, out of above formula we have

$$((a,x) \bowtie \theta \land (x,b) \in \alpha \land (b,b) \bowtie \theta) \lor ((b,b) \bowtie \theta \land (b,z) \in \alpha \land (z,c) \bowtie \theta))$$

and, finally

$$(a,b) \in \theta^C \circ \alpha \circ \theta^C \lor (b,c) \in \theta^C \circ \alpha \circ \theta^C. \square$$

In the following assertion we give an answer on on the question: If $\mathbf{A} = (A, \alpha)$ is a quasi-antiorder relational system and θ is a coequality relation on A, when the factor-system $(A/\theta, \alpha/\theta)$ is a quasi-antiorder relational system too?

Corollary 1.1. Let $\mathbf{A} = (A, \alpha)$ be a consistent and cotransitive relational system and θ be a coequality on A such that $\alpha \subseteq \theta$. Then, the relation α/θ is a consistent and cotransitive on set A/θ .

However, following [3] the lower and upper bounds can be defined also for general relational systems. Let $\mathbf{A} = (A, \alpha)$ be a relational system and a, b be elements of A. In the tradition of [3] but some different to it we introduce the following notations:

$$L_A(a,b) = \{x \in A : (x,a) \in \alpha \lor (x,b) \in \alpha\}$$
$$U_A(a,b) = \{y \in A : (a,y) \in \alpha \lor (b,y) \in \alpha\}.$$

If a = b, we will write $L_A(a)$ and $U_A(b)$ instead αa and $b\alpha$ respectively. Clearly, if α is a consistent relation, then $a \bowtie L_A(a)$ and $a \bowtie U_A(a)$ for each $a \in A$. It is easy to prove the following two assertions:

Remark. Let $\mathbf{A} = ((A, =, \neq), \alpha)$ be a quasi-antiorder relational systems. Then:

$$(a,b) \bowtie \alpha$$
 iff $L_A(a,b) = L_A(a)$ iff $U_A(a,b) = U_A(b)$

and

$$(a,b) \in \alpha \iff A = U_A(a) \cup L_B(b).$$

Proof. (1) It is clear that $L_A(a) \subseteq L_A(a, b)$. Suppose that $(a, b) \bowtie \alpha$. Now out of $(x, b) \in \alpha$ and $(a, b) \bowtie \alpha$ follows $(x, a) \in \alpha$. Therefore, $(a, b) \bowtie \alpha \Longrightarrow L_A(a) = L_A(a, b)$.

(2) Let $L_A(a,b) = L_A(a)$ holds. Out of $a \bowtie L_A(a) = L_A(a,b)$ we conclude that $(a,b) \bowtie \alpha$. In fact, let (u,v) be an arbitrary element of α . Then, we have $(u,a) \in \alpha$ or $(a,b) \in \alpha$ or $(b,v) \in \alpha$. Suppose that $(a,b) \in \alpha$. Then, it would be

$$a \in L_A(b) \subseteq L_A(a) \cup L_A(b) = L_A(a,b) = L_A(a).$$

Since the least is impossible, we conclude that $(a, b) \neq (u, v)$.

(3) The proof for $(a, b) \bowtie \alpha$ iff $U_A(a, b) = U_A(b)$ we get analogously.

Following definition of LU-mapping in [3] we introduce analogous notion:

Definition 3. Let $\mathbf{A} = ((A, =, \neq), \alpha)$ and $\mathbf{B} = ((B, =, \neq), \beta)$ be two relational systems. A surjective strongly extensional mapping $f : A \longrightarrow B$ is called an LU-mapping if

$$f(L_A(x,y)) = L_A(f(x), f(y))$$
 and $f(U_A(x,y)) = U_A(f(x), f(y))$

holds for all $x, y \in A$.

If $\mathbf{A} = ((A, =, \neq), \alpha)$ and $\mathbf{B} = ((B, =, \neq), \beta)$ are quasi-antiorder relational systems and if f is a strongly extensional and reverse isotone surjective mapping, then

$$L_B(f(x), f(y)) \subseteq f(L_A(x, y))$$
 and
 $U_B(f(x), f(y)) \subseteq f(U_A(x, y)).$

Indeed, let $z \in L_B(f(x), f(y))$, i.e. let $(z, f(x)) \in \beta$ or $(z, f(y)) \in \beta$. Then there exists an element t of A such that z = f(t) and $(f(t), f(x)) \in \beta$ or $(f(t), f(y)) \in \beta$. Since, f is a reverse isotone mapping, we have $(t, x) \in \alpha$ or $(t, y) \in \alpha$. Thus, $t \in L_A(x, y)$ and $z = f(t) \in f(L_A(x, y))$. Proof for inclusion $U_B(f(x), f(y)) \subseteq f(U_A(x, y))$ is analogous.

In the following theorem we prove that every strongly extensional reverse isotone QS-mapping between two quasi-antiorder relational systems is LUmapping.

Theorem 1. Let $\mathbf{A} = ((A, =, \neq), \alpha)$ and $\mathbf{B} = ((B, =, \neq), \beta)$ be quasiantiorder relational systems and $f : A \longrightarrow B$ be a strongly extensional reverse isotone surjective QS-mapping. Then f is a strongly extensional isotone and reverse isotone LU-mapping.

Proof. (1) Let z be an arbitrary element of $f(L_A(x, y))$. Then there exists an element t of $L_A(x, y)$ such that z = f(t) and $(t, x) \in \alpha \lor (t, y) \in \alpha$. Since f is QS-mapping, then there exist elements $a, b, c, d \in A$ such that

$$z = f(t) = f(a) \land (f(a), f(b)) \in \beta \land f(b) = f(x)$$

or

$$z = f(t) = f(c) \land (f(c), f(d)) \in \beta \land f(d) = f(y).$$

Thus, we have $z \in \{u \in B : (u, f(x)) \in \beta \lor (u, f(y)) \in \beta\} = L_B(f(x), f(y)).$ (2) The second inclusion $f(U_A(x, y)) \subseteq U_B(f(x), f(y))$ we prove analogously. \Box

The first important result about relational system \mathbf{A}/θ is given by the following theorem.

Theorem 2 Let $\mathbf{A} = ((A, =, \neq), \alpha)$ be a quasi-antiorder relational systems. If θ is a coequality on A such that $\alpha \subseteq \theta$, then the canonical mapping $\pi : A \longrightarrow A/\theta$ is a QS-mapping.

Proof: Let θ be a coequality relation on a quasi-antiorder relational systems $((A, =, \neq), \alpha)$ and let α/θ be a relation on A/θ defined by

$$(a\theta, b\theta) \in \alpha/\theta \iff (a, b) \in \theta^C \circ \alpha \circ \theta^C$$

For the mapping $\pi: A \longrightarrow A/\theta$, defined by $\pi(a) = a\theta$ $(a \in A)$, we have:

(i) For elements a and b of A such that a = b we have $(a, b) \bowtie \theta \supseteq \theta^C \circ \alpha \circ \theta^C$. Hence, if (u, v) be an arbitrary element of $\theta^C \circ \alpha \circ \theta^C$, then we have $(a, b) \neq (u, v) \in \theta^C \circ \alpha \circ \theta^C$. So, finally, we have $a\theta =_1 b\theta$.

(ii) It is obvious that is a strongly extensional mapping.

(iii) By Corollary 1.1, the relation α/θ is a quasi-antiorder and the system \mathbf{A}/θ is quasi-antiorder system. Suppose that $(a\theta, b\theta) \in \alpha/\theta$, i.e. suppose that there exists elements x, y of A such that $(a, x) \bowtie \theta$ and $(x, y) \in \alpha$ and $(y, b) \bowtie \theta$. Since $\theta \supseteq \alpha$, out of $(x, a) \in \alpha \lor (a, b) \in \alpha \lor (b, y) \in \alpha$ we have $(a, b) \in \alpha$ because $(x, a) \bowtie \alpha$ and $(b, y) \bowtie \alpha$. Hence, from $(\pi(a), \pi(b)) \in \alpha/\theta$ we conclude that $(a, b) \in \alpha$. Therefore, the mapping π is reverse isotone.

(iv) If $(x, y) \in \alpha$, then $(x, y) \in \theta^C \circ \alpha \circ \theta^C$, i.e. then $(x\theta, y\theta) \in \alpha/\theta$. Thus, $(x, y) \in \pi^{-1}(\alpha/\theta)$. Therefore, we have $\alpha \subseteq \pi^{-1}(\alpha/\theta) \subseteq \theta^C \circ \pi^{-1}(\alpha/\theta) \circ \theta^C$. So, the mapping π is a QS-mapping. \Box

The second main result about the relational system A/θ is given by the following theorem and corollary.

Theorem 3 Let $\mathbf{A} = ((A, =, \neq), \alpha)$ and $\mathbf{B} = ((B, =, \neq), \beta)$ be quasi-antiorder relational systems and let $\varphi : A \longrightarrow B$ be a surjective QS-mapping. Then Coker φ is a coequality on \mathbf{A} and there exists the strongly extensional and embedding isotone and reverse isotone bijective mapping $\psi : \mathbf{A}/Coker \longrightarrow$ $((B, \neg \neq, \neq), \beta).$

Proof: We will verify first that $\psi : A/Coker\varphi \longrightarrow B$, defined by $\psi(aq) = \varphi(a)$, where $q = Coker\varphi$, is a strongly extensional QS-mapping of sets such that $\psi \circ \pi = \varphi$. Let α/q be a quasi-antiorder on set A/q. Then:

(1) The relation $\psi : A/q \longrightarrow B$, defined by $\psi(aq) = \varphi(a)$, is a strongly extensional and embedding relation:

$$\psi(aq) \neq \psi(bq) \iff \varphi(a) \neq \varphi(b)$$
$$\iff (a,b) \in Coker\varphi = q$$
$$\iff aq \neq_1 bq.$$

(2) The ψ is an injective relation: In fact, since $\psi(aq) = \psi(bq)$ is equivalent with $(a, b) \in Ker\varphi$, for arbitrary element $(u, v) \in q$ we have $(a, b) \neq (u, v) \in q$. Thus, $aq =_1 bq$.

(3) Let $aq =_1 bq$, i.e. let $(a, b) \bowtie q$ and suppose that $\psi(aq) \neq \psi(bq)$. Thus, we conclude $(a, b) \in q$ which is impossible. So, should be $\neg(\psi(aq) \neq \psi(bq))$. Therefore, the relation ψ is a strongly extensional, injective and embedding mapping from A onto $(B, \neg \neq, \neq)$.

(4) Let $(\psi(aq), \psi(bq)) \in \beta$, i.e. let $(\varphi(a), \varphi(b)) \in \beta$. Thus $(a, b) \in \alpha \subseteq q^C \circ \alpha \circ q^C$ and $(aq, bq) \in \alpha/q$. So, the mapping ψ is reverse isotone.

(5) Let (aq, bq) be an arbitrary element of α/q , i.e. let $(a, b) \in q^C \circ \alpha \circ q^C$. Since $\alpha \subseteq Ker\varphi \circ \varphi^{-1}(\beta) \circ Ker\varphi$, we have

$$(a,b) \in q^C \circ \alpha \circ q^C \subseteq q^C \circ Ker \varphi \circ \varphi^{-1}(\beta) \circ Ker \varphi \circ q^C.$$

Therefore, there exist elements x, x', y', y of A such that $(a, x) \bowtie q$ and $(x, x') \in Ker\varphi$ and $(x', y') \in \varphi^{-1}(\beta)$ and $(y', y) \in Ker\varphi$ and $(y, b) \bowtie q$, i.e. holds $(a, x) \bowtie q$ and $(x, x') \in Ker\varphi$ and $(x', y') \in \varphi^{-1}(\beta)$ and $(y', y) \in Ker\varphi$ and $(y, b) \bowtie q$. Further on, out of $(\varphi(x'), \varphi(y')) \in \beta$ we have $(\varphi(x'), \varphi(x)) \in \beta \subseteq \neq$ or $(\varphi(x), \varphi(a)) \in \beta \subseteq \neq$ or $(\varphi(a), \varphi(b)) \in \beta$ or $(\varphi(b), \varphi(y)) \in \beta \subseteq \neq$ or $(\varphi(y), \varphi(y')) \in \beta \subseteq \neq$. Finally, we have $(\varphi(a), \varphi(b)) \in \beta$ and the mapping ψ is an isotone mapping. \Box

Corollary 3.1 Let $\mathbf{A} = ((A, =, \neq), \alpha)$ and $\mathbf{B} = ((B, =, \neq), \beta)$ be quasiantiorder relational systems, where the apartness on B are tight, and let φ : $\mathbf{A} \longrightarrow \mathbf{B}$ be a surjective QS-mapping. Then Coker φ is a coequality on \mathbf{A} and there exists the isomorphism: $A/Coker\varphi \cong ((B, =, \neq), \beta)$ as quasi-antiorder relational systems.

References

- E. Bishop: Foundations of constructive analysis; McGraw-Hill, New York 1967.
- [2] D. S. Bridges and F. Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
- [3] I. Chajda: Congruences in transitive relational systems; Miskolc Math. Notes, 5(1)(2004), 19-23
- [4] A.I.Maltsev: Toward a general theory of algebraic systems, Matem. Sbornik, 33 (1954), 3-20. (In Russian)
- [5] A.I.Maltsev: Algebraic systems, Springer -Verlag, Berlin, 1973
- [6] R. Mines, F. Richman and W. Ruitenburg: A course of constructive algebra, Springer, New York 1988
- [7] D.A.Romano: On construction of maximal coequality relation and its applications; In : Proceedings of 8th international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tošić and Z.Budimac), Institute of Mathematics, Novi Sad 1997, 225-230

- [8] D. A. Romano: Some relations and subsets of semigroup with apartness generated by the principal consistent subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25
- [9] D. A. Romano: A note on quasi-antiorder in semigroup; Novi Sad J. Math., 37(1) (2007), 3-8
- [10] D.A.Romano: On regular anticongruence in anti-ordered semigroups; Publications de l'Institut Mathematique, 81(95)(2007), 95-102
- [11] D.A.Romano: The second isomorphism theorem on ordered set under antiorders; Kragujevac J. Math., 30(2007), 235-242
- [12] D.A.Romano: An isomorphism theorem for anti-ordered sets; Filomat, 22 (1) (2008), 1-16 pp (To appear)
- [13] D.A.Romano: Isomorphism theorems for QA-mappings; Inter. J. Contemp. Math. Sci., 3(14)(2008), 695-701
- [14] A. S. Troelstra and D. van Dalen: Constructivism in mathematics, an introduction; North-Holland, Amsterdam 1988

Received: March 17, 2008